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Abstract A process is a collection of actions that were already, are currently being,
or must be taken in order to achieve a goal, where an action is an atomic unit of work,
for instance, a business activity or an instruction of a computer program. A process
repository is an organized collection of models that describe processes, for example,
a business process repository and a software repository. Process repositories without
facilities for process querying and process manipulation are like databases without
Structured Query Language, that is, collections of elements without effective means
for deriving value from them. Process Query Language (PQL) is a domain-specific
programming language for managing processes described in models stored in process
repositories. PQL can be used to query and manipulate process models based on
possibly infinite collections of processes that they represent, including processes
that support concurrent execution of actions. This chapter presents PQL, its current
features, publicly available implementation, planned design and implementation
activities, and open research problems associated with the design of the language.
Keywords: Process querying, process manipulation, Process Query Language, PQL

1 Introduction

Computing revolutionizes many aspects of our lives by innovating how data is
collected and processed. The innovations often stem from the ability to design,
manage, and automatically learn semantically rich artifacts from the data, for example,
using machine learning, statistical analysis, and data and process mining techniques.
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Such semantically rich artifacts reflect different types of patterns present in the
data, calling for dedicated methods for querying and manipulating them to allow
systematic derivation of value. One such type of patterns concerns temporal aspects
of the data, capturing how work is carried out in processes.

A process is a collection of actions that, when executed, lead to the accomplish-
ment of a goal. An action is an atomic unit of work. For example, an action can
represent a business activity or a computer program instruction. Execution of an
action in a process leads to a change in the state of the process. A process can contain
already executed actions, actions that are currently being executed, and actions that
yet are awaiting their execution. A process solely composed of already executed
actions represents a historical process that was observed in the real world. In turn, a
process comprising only designed but not executed actions is an envisioned process
that may be observed in the future. A process model is a model that describes a
collection of processes that encode different ways to accomplish the same goal. Note
that a process model often describes an infinite collection of processes to address
the need to iterate certain actions an initially unknown number of times to achieve
the desired process state. Finally, a process repository is an organized collection
of process models. For example, models can be organized into folders to impose
their logical grouping. Examples of process repositories include business process
repositories and software repositories.

Process repositories without process querying and process manipulation capabili-
ties are of low practical utility, as their manual processing is often infeasible. Process
Query Language (PQL) is a domain-specific programming language for querying
and manipulating process models based on the processes these models describe. It is
a declarative language with SQL-like syntax. PQL programs are also called queries.

To support process querying, PQL implements two classes of predicates. The first
class comprises the 4C behavioral predicates, a collection of constraints that sys-
tematically explore the fundamental behavioral relations of co-occurrence, conflict,
causality, and concurrency in processes [22, 28]. These predicates, for instance, can
be used to retrieve models that describe processes in which a given action always
occurs or in which a given pair of actions can be executed concurrently. The second
class is composed of process scenarios, sequences of actions with wildcards [25]. De-
spite being declarative, process scenarios allow checking whether a model describes
processes that contain requested sequences of actions. Hence, process scenarios can
be used to retrieve models that describe processes that obey the requested imperative
constraints.

PQL supports statements for process manipulation. Concretely, one can use PQL
to specify and execute instructions for manipulating models to insert, delete, and
update processes in the collections of processes these models describe. The process
insertion capabilities of PQL are implemented as a solution to the process repair
problem [20, 25]. The delete and update process manipulations are not implemented
in the current version of PQL. Still, they are demonstrated here for the completeness
of the discussion of the intended scope for the language.

The next section presents several motivating examples of PQL programs for
querying and manipulating processes. Section 3 gives an overview of the features
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currently supported by PQL. To facilitate the comparison of PQL with another
process querying methods, Section 4 positions PQL within the Process Querying
Framework [24]. Then, Section 5 discusses our open-source implementation of a
process repository that supports PQL. Section 6 surveys open research problems
triggered by the design of PQL and lists planned efforts that aim to shape the language.
Finally, Section 7 closes the chapter with conclusions.

2 Motivating Examples

In this section, we present several motivating examples of PQL programs for querying
and manipulating process models. To this end, we use an example process repository
composed of six process models shown in Fig. 1. The models are captured in Business
Process Model and Notation (BPMN). In BPMN, rectangles with rounded corners
denote actions. Gateways are visualized as diamonds. Exclusive gateways use the
“×” marker inside the diamond shape, whereas parallel gateways use the “+” marker.
Directed arcs encode control flow dependencies. For simplicity, the models in the
example repository use abstract action labels; see labels A through G in the figure.
In general, an action label specifies the meaning of the action, for example, “assess
claim” or “archive case.” Models can be further supplied with attributes, for instance,
unique identifier, version, creation date, and author. Models can be grouped into
collections in a repository by putting them into folders, which, similar to folders of a
file system, can form a folder hierarchy.

Models in a repository can be queried using PQL SELECT statements. For exam-
ple, PQL queries Q1 and Q2 listed below implement process querying using the 4C
predicates, while PQL queries Q3 and Q4 use process scenarios.

Q1. SELECT ∗ FROM ∗
WHERE AlwaysOccurs("C") AND
Cooccur("B","C");

Q2. SELECT "Author", "Version" FROM "/examples"
WHERE (CanOccur("G") AND
(NOT Conflict("E","G"))) OR
(TotalConcurrent("C",{"B","D"},ANY) AND
AlwaysOccurs("C"));

Query Q1 requests to retrieve every model and all its attributes (see “SELECT ∗”)
from every folder of the repository (“FROM ∗”) that describes (“WHERE”) a col-
lection of processes in which every process contains at least one occurrence of
action C (“AlwaysOccurs("C")”) and actions B and C cooccur in the processes
(“Cooccur("B","C")”), that is, B cannot occur without C in a process, C cannot
occur without B in a process, and there exists at least one process in the collection in
which both actions B and C appear. Model 1 in Fig. 1 matches query Q1 and, thus,
should be retrieved if Q1 is executed over the repository. Indeed, model 1 describes
four processes: 〈A,B,C,D,E,F〉, 〈A,C,B,D,E,F〉, 〈A,B,C,D,B〉, and 〈A,C,B,D,B〉;
we map BPMN models to Petri nets to interpret them as collections of processes [7].
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Fig. 1: An example process repository.

Note that action C occurs in every process, while actions B and C cooccur in the
processes of the model. Models 5 and 6 also match query Q1. It is easy to verify
that both actions B and C occur in all processes these two models describe, as every
process starts with one of these two prefixes: 〈A,B,C〉 or 〈A,C,B〉. To denote which
models match which queries, in Fig. 1, under each model, we mark corresponding
checkboxes. Hence, models 2, 3, and 4 do not match query Q1. For instance, the
process 〈B,A〉 described by model 2 confirms that neither C always occurs nor B and
C cooccur in the processes of model 2.

Query Q2 requests to retrieve process models and their attributes Author and
Version (“SELECT "Author", "Version"”) located in the “/examples”
folder of the repository (“FROM "/examples"”) that satisfy at least one of the
two following conditions. First, the model should describe at least one process in
which action G occurs at least once (“CanOccur("G")”) and actions E and G do
not conflict (“NOT Conflict("E","G")”), where actions E and G conflict if
the model describes at least one process in which E occurs but G does not occur,
at least one process in which G occurs but E does not occur, and the model does
not describe a process in which both E and G occur. Second, in every process of
the model, action C occurs (“AlwaysOccurs("C")”), and all occurrences of
action C are either concurrent with all occurrences of B or with all occurrences of
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Fig. 2: Three concurrent processes of model 5 from Fig. 1.

D (“TotalConcurrent("C",{"B","D"},ANY)”). In general, two actions A
and B are in the total concurrent relation if in every process in which both A and B
occur, every occurrence of action A is concurrent with every occurrence of action B;
refer to Section 3 for details.

Assuming that all models in Fig. 1 are stored in the “/examples” folder, mod-
els 3, 5, and 6 match query Q2. In model 3, action G can occur, consider, for example,
the process 〈A,G〉 of the model, and actions E and G do not conflict, as evidenced, for
instance, by the process 〈A,G,D,E,D〉 of the model. In models 5 and 6, in turn, action
C always occurs and actions B and C are in the total concurrent relation. Fig. 2 shows
three, out of infinitely many, concurrent processes described by model 5. In these
three processes, actions B and C occur once and are concurrent; there is no directed
path between these actions; for details, again, see Section 3. The same phenomenon
can be observed for all the other processes of model 5. Note that the only occurrence
of action C is concurrent with the only occurrence of action D in process 1. However,
in processes 2 and 3, there are occurrences of action D that are not concurrent with
the occurrence of action C. These occurrences are highlighted with gray background
in the figure.

PQL query Q3 below requests to retrieve all process models in the repository
that support a process that commences with zero or more actions before action B
occurs, then eventually action D occurs in the process, followed eventually by another
occurrence of action B, and then the process completes via zero or more occurrence
of any other actions. Models 1 and 4 from the repository in Fig. 1 match query
Q3. This fact is evidenced by processes 〈A,B,C,D,B〉 and 〈A,B,D,B〉 described by
models 1 and 4, respectively. Query Q4, also shown below, requests to retrieve
models that describe the process 〈A,B,C,D,E,F〉 and does not describe processes
with two consecutive occurrences of action B. Models that match this query are
models 1, 5, and 6.

Q3. SELECT ∗ FROM ∗
WHERE Executes(<∗,"B",∗,"D",∗,"B",∗>);

Q4. SELECT ∗ FROM ∗
WHERE Executes(<"A","B","C","D","E","F">) AND
NOT Executes(<∗,"B","B",∗>);
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Fig. 3: Manipulated process models.

The attentive reader has noticed that models 5 and 6 from the repository describe
the same processes. Thus, these two models, besides being structurally different, are
behaviorally equivalent. The result of a PQL query depends on the processes the
models describe and is independent of the particular way the models are structured.
Consequently, models 5 and 6 either both match or both do not match a given PQL
query; refer to the checkboxes next to these two models in Fig. 1.

PQL queries Q5–Q7 below capture instructions for manipulating process models.

Q5. INSERT <∗,"F","D","G",∗> INTO ∗
WHERE Executes(<∗,"F","G",∗>);

Q6. DELETE <"A","G"> FROM ∗
WHERE GetTasksAlwaysOccurs(GetTasks())
EQUALS {};

Q7. UPDATE <"A","G",∗>
SET <"A","F",∗>
FOR ∗;

Query Q5 ensures that each model from every folder of the repository (“INTO ∗”)
that describes a process in which an occurrence of action G immediately follows
an occurrence of action F (“WHERE Executes(<∗,"F","G",∗>)”) also de-
scribes a process in which an occurrence of F is immediately followed by an
occurrence of D that, in turn, is immediately followed by an occurrence of G
(“INSERT <∗,"F","D","G",∗>”). If a model that describes the former process
also describes the latter requested process, the model is not manipulated. Other-
wise, the model is manipulated to obtain an extended version of the model that also
describes the requested latter process. Models 5 and 6 in the repository describe
processes in which F is immediately followed by G and, hence, must be manipulated.
Model 7 in Fig. 3 is a model that can be created based on model 5 as a result of
executing PQL query Q5. Note that model 7 describes the requested process. Note
also that the requested manipulation can be implemented in several ways, which
raises the question of the quality of the resulting model. This aspect is a subject of
ongoing research and is discussed in Section 6.
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Query Q6 captures a request to manipulate every process model in the repository
(“FROM ∗”) that does not contain an action that occurs in each of its processes
(“WHERE GetTasksAlwaysOccurs(GetTasks()) EQUALS {}”) and de-
scribes the process that starts with an occurrence of action A and then immediately
completes with an occurrence of action G so that the resulting model does not de-
scribe that process (“DELETE <"A","G">”). Models 2 and 3 from the repository
match the condition in the WHERE clause. However, only model 3 describes process
〈A,G〉, and, thus, should be manipulated. The resulting, manipulated by PQL, model
is added as a fresh model to the repository. Similar as for the INSERT statement,
several valid resulting models can be considered. For example, models 8 and 9 in
Fig. 3 can be accepted as models that result from executing query Q6 over model 3.
While model 8 does not describe all the processes with prefix 〈A,G〉 described by
model 3, including the requested process 〈A,G〉, the processes described by model 9
differ from those described by model 3 by exactly one process 〈A,G〉. Note that the
implementation of the DELETE statement can vary between versions of PQL.

Finally, query Q7 requests to update all models in the repository (“FOR ∗”) by
updating processes that start with the prefix 〈A,G〉 (“UPDATE <"A","G",∗>”) to
start with the prefix 〈A,F〉 (“SET <"A","F",∗>”). Again, multiple implementa-
tions of the UPDATE statement can be envisaged, and model 10 in Fig. 3 is a possible
result of executing query Q7 over model 3, which is also the only model in Fig. 1
that must be manipulated according to query Q7.

3 Process Query Language

This section reviews the core features of PQL. First, Section 3.1 discusses the main
primitives of PQL for querying process models. Then, Section 3.2 presents the
currently implemented PQL mechanisms for manipulating process models.

3.1 Process Querying

For the purpose of process querying, PQL interprets a process model as a collection
of concurrent processes. A concurrent process is a collection of actions such that for
some pairs of actions in the collection, it is specified that one of the actions causally
precedes the other in the executions of the process. The control flow arcs and the
transitive dependencies that these arcs induce in Fig. 2 define the causal precedence
relations of the corresponding concurrent processes. In concurrent process 1 in Fig. 2,
for example, action A causally precedes action E, which, in turn, causally precedes
action F. In contrast, for the pairs of actions that are not in the causal precedence
relation, it is accepted that they are independent, or concurrent, and, thus, can be
performed simultaneously in the executions of the process. For instance, actions B
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and E are concurrent in process 1 in Fig. 2. As already explained in Section 2, a
process model can describe infinitely many concurrent processes.

Every concurrent process describes a collection of (sequential) processes. These
are processes that do not violate the causal precedence constraints of the concur-
rent process. For example, concurrent process 2 in Fig. 2 describes twelve sequen-
tial processes, induced by all the interleavings of the concurrent actions; these
twelve processes include, for instance, processes 〈A,B,C,E,D,F,G,D,E,F〉 and
〈A,C,B,E,D,F,G,E,D,F〉. Every concurrent process describes a finite collection
of sequential processes. But, needless to say, a model that describes infinitely many
concurrent processes also describes infinitely many sequential processes.

To perform process querying using PQL, the user can specify a query that requests
to retrieve models that fulfill a condition verified over all the processes of the models.
One way to specify a condition is by using behavioral predicates, as detailed in
Section 3.1.1, or scenarios, as discussed in Section 3.1.2.

3.1.1 Behavioral Predicates

Process models describe processes composed of actions that can be executed and,
thus, observed in the real world. One way to convey how many occurrences of an
action, or pairs of actions in a specific behavioral relationship, can be observed in the
executions of processes described by the model is by using predicates with quanti-
fiers.1 When studying process models, the user may, for instance, be interested in
how often certain actions can occur, how often certain actions can cause occurrences
of other actions, or how often actions can be executed simultaneously.

The 4C spectrum is a systematically organized repertoire of predicates that assess
in how many processes that a model describes how many occurrences of one action
are in a specific behavioral relation with how many occurrences of another action [28].
The predicates of the spectrum explore the fundamental behavioral relations of co-
occurrence, conflict, causality, and concurrency of action occurrences in processes.
Hence, we refer to these predicates as behavioral predicates.

A PQL query can use predicates of the 4C spectrum as atomic propositions in
the propositional logic formula of its WHERE clause. When a model is matched to a
query, the value of each predicate is established based on the processes that the model
describes. If the formula in the WHERE clause of a SELECT statement evaluates to
true for a particular model, then the model is included in the result of the query.
Additional checks may need to be applied for other PQL statement types to confirm
that the model indeed must be manipulated.

To accompany the 4C predicates, all of which are binary predicates, that is, they
take two actions as input, PQL supports two unary predicates listed in Table 1. As
suggested by their definitions, these predicates allow verifying the frequencies of
individual action occurrences, for example, before applying the 4C predicates, which
then can explain how these occurrences relate to each other.

1 A predicate is a function that evaluates to either true or false truth value, while a quantifier is an
operator that specifies how many elements from the given collection should satisfy an open formula.
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Predicate Definition
CanOccur(A) The predicate evaluates to true if the model describes at least one process

with at least one occurrence of action A; otherwise, it evaluates to false.
AlwaysOccurs(A) The predicate evaluates to true if every process the model describes has

at least one occurrence of action A; otherwise, it evaluates to false.

Table 1: Occurrence predicates; the predicates are evaluated in the context of a process model.

Table 2 lists six 4C predicates grounded in the conflict and co-occurrence be-
havioral relations. Note that the CanConflict and CanCooccur predicates are
seminal as the remaining four predicates from the table can be expressed as proposi-
tional logic formulas over them. Hence, these four predicates can be seen as macros
that can simplify the conditions the user may want to express in the WHERE clause of
a PQL query. The CanConflict and CanCooccur predicates can be combined
into logic formulas to express other conditions that explore conflict and co-occurrence
behavioral relations. According to one classification, 63 conflict and 15 co-occurrence
properties can be expressed this way [28].

Predicate Definition
CanConflict(A,B) The predicate evaluates to true if the model describes at least one process

with at least one occurrence of action A and no occurrences of action B;
otherwise, it evaluates to false.

CanCooccur(A,B) The predicate evaluates to true if the model describes at least one process
with at least one occurrence of action A and at least one occurrence of
action B; otherwise, it evaluates to false.

Conflict(A,B) The predicate evaluates to true if the model describes no process with at
least one occurrence of action A and at least one occurrence of action B;
otherwise, it evaluates to false.

Cooccur(A,B) The predicate evaluates to true if every process the model describes that
has at least one occurrence of action A also has at least one occurrence
of action B, and vice versa; otherwise, it evaluates to false.

Requires(A,B) The predicate evaluates to true if the model describes no process with at
least one occurrence of action A and no occurrences of action B, at least
one process with at least one occurrence of action B and no occurrences
of action A, and at least one process with at least one occurrence of
action A and at least one occurrence of action B; otherwise, it evaluates
to false.

Independent(A,B) The predicate evaluates to true if the model describes at least one process
with at least one occurrence of action A and no occurrences of action
B, at least one process with at least one occurrence of action B and
no occurrences of action A, and at least one process with at least one
occurrence of action A and at least one occurrence of action B; otherwise,
it evaluates to false.

Table 2: Co-occurrence and conflict predicates; the predicates are evaluated in the context of a
process model.
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Table 3 lists all the 4C predicates grounded in the causal precedence and concur-
rency behavioral relations. Given actions A and B, the predicates emerge through
universal or existential quantification over three domains, namely the collection of
all concurrent processes that the model describes (see column “Pr.” in the table), the
collection of all occurrences of action A in a concurrent process the model describes
(column “A”), and the collection of all occurrences of action B in the same concurrent
process, and the choice of the behavioral relation between the occurrences of actions
A and B (column “Rel.”), either causal precedence (“Causal.”) or concurrency (“Con-
cur.”). These configurations lead to eight causality and eight concurrency predicates.
The syntax of the behavioral predicates in PQL and their names are provided in
columns “Syntax” and “Name” of Table 3, respectively.

Pr. A B Rel. Syntax Name
∀ ∀ ∀ Causal. TotalCausal(A,B) Total (mutual) causal
∀ ∀ ∀ Concur. TotalConcurrent(A,B) Total (mutual) concurrent
∀ ∀ ∃ Causal. TotalFunctionalCausal(A,B) Total functional causal
∀ ∀ ∃ Concur. TotalFunctionalConcurrent(A,B) Total functional concurrent
∀ ∃ ∀ Causal. TotalDominantCausal(A,B) Total dominant causal
∀ ∃ ∀ Concur. TotalDominantConcurrent(A,B) Total dominant concurrent
∀ ∃ ∃ Causal. TotalExistCausal(A,B) Total existential causal
∀ ∃ ∃ Concur. TotalExistConcurrent(A,B) Total existential concurrent
∃ ∀ ∀ Causal. ExistTotalCausal(A,B) Existential total causal
∃ ∀ ∀ Concur. ExistTotalConcurrent(A,B) Existential total concurrent
∃ ∀ ∃ Causal. ExistFunctionalCausal(A,B) Existential functional causal
∃ ∀ ∃ Concur. ExistFunctionalConcurrent(A,B) Existential functional concurrent
∃ ∃ ∀ Causal. ExistDominantCausal(A,B) Existential dominant causal
∃ ∃ ∀ Concur. ExistDominantConcurrent(A,B) Existential dominant concurrent
∃ ∃ ∃ Causal. ExistCausal(A,B) Existential (mutual) causal
∃ ∃ ∃ Concur. ExistConcurrent(A,B) Existential (mutual) concurrent

Table 3: Concurrency and causality predicates; “Pr.” – concurrent processes of the model, “A” –
occurrences of action A in the concurrent process, “B” – occurrences of action B in the concurrent
process, “∀” – every concurrent process of the model/every occurrence of the action in the concurrent
process, “∃” – exists a concurrent process of the model/exists an occurrence of the action in the
concurrent process, “Rel.” – behavioral relation, “Syntax” – PQL syntax for expressing the predicate,
and “Name” – the name of the predicate. The predicates are evaluated in the context of a process
model.

For example, the total concurrent predicate evaluates to true for input actions
A and B, if in every (“∀”) concurrent process the model describes that has at least
one occurrence of action A and at least one occurrence of action B, it holds that
every (“∀”) occurrence of action A is concurrent (“Concur.”) with every (“∀”) oc-
currence of action B; otherwise, the total concurrent predicate evaluates to false
for that input. Thus, TotalConcurrent(B,C) evaluates to true for model 5 in
Fig. 1. Indeed, every concurrent process of model 5 contains exactly one occur-
rence of action B, exactly one occurrence of action C, and these occurrences are
concurrent; see three out of infinitely many concurrent processes model 5 describes
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Fig. 4: The 4C spectrum causality/concurrency lattice [28].

in Fig. 2. In contrast, TotalConcurrent(D,E) evaluates to false for model 5
and processes 2 and 3 in Fig. 2 evidence this, as they contain occurrences of D and
E that are in the causal precedence relation. However, process 1 in Fig. 2 justifies
the fact that ExistTotalConcurrent(̃D,E) holds true. This predicate verifies
whether there exists a concurrent process described by the model in which all oc-
currences of actions are concurrent. In process 1, there is exactly one occurrence
of action D, exactly one occurrence of action E, and these two occurrences are con-
current. Note, however, that “stronger” concurrency relations also hold between
actions D and E in model 5, for instance, TotalFunctionalConcur(D,E) and
TotalFunctionalConcur(E,D). Indeed, in every (“∀”) concurrent process of
model 5, for every (“∀”) occurrence of action D in the process, there exists (“∃”) an
occurrence of action E that is concurrent with that occurrence of D, and vice versa.

As examples of the causality predicates, note that TotalCausal(B,D) holds,
but TotalCausal(C,D) does not hold for model 5 from Fig. 1. In every concur-
rent process in Fig. 2 it holds that the only occurrence of action C is concurrent to
one occurrence of action D, invalidating the total causal relation between the actions.
In contrast, the only occurrence of action B is in the causal precedence relation with
every occurrence of action D in every concurrent process of model 5.

Table 4 lists definitions of all the eight 4C causality predicates. The definitions
of the eight concurrency predicates can be obtained by replacing the causal prece-
dence relations with the concurrency relations. Furthermore, Polyvyanyy et al. [28]
formalize all the predicates using mathematical notation.

As already mentioned, causality and concurrency predicates can be distinguished
based on their “strength.” Fig. 4 summarizes implications between the pairs of
causality (or concurrency) predicates from the 4C spectrum; the transitive impli-
cations are not shown. The vertices represent causality (or concurrency) pred-
icates, while the labels encode the quantifiers from the first three columns in
Table 3. Hence, for example, the fact that the ExistTotalCausal predicate
holds for a given pair of actions (see the “∃∀∀” label in Fig. 4) implies that both
ExistFunctionalCausal (“∃∀∃”) and ExistDominantCausal (“∃∃∀”)
predicates hold and, transitively, ExistCausal (“∃∃∃”) holds for the same pair
of actions; note that the converse implications, in general, do not hold. Consequently,
we say that ExistTotalCausal is stronger than the other existential causality
predicates.
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Predicate Definition
ExistCausal(A,B) The predicate evaluates to true if the model describes at

least one concurrent process in which at least one occur-
rence of action A causally precedes at least one occurrence
of action B; otherwise, it evaluates to false.

ExistDominantCausal(A,B) The predicate evaluates to true if the model describes at
least one concurrent process with at least one occurrence of
action B and, in that concurrent process, there is one occur-
rence of action A that causally precedes every occurrence
of action B; otherwise, it evaluates to false.

ExistFunctionalCausal(A,B) The predicate evaluates to true if the model describes at
least one concurrent process with at least one occurrence
of action A and, in that concurrent process, there is one
occurrence of action B such that every occurrence of action
A causally precedes that occurrence of action B; otherwise,
it evaluates to false.

ExistTotalCausal(A,B) The predicate evaluates to true if the model describes at
least one concurrent process with at least one occurrence
of action A, at least one occurrence of action B, and, in that
concurrent process, every occurrence of action A causally
precedes every occurrence of action B; otherwise, it evalu-
ates to false.

TotalExistCausal(A,B) The predicate evaluates to true if in every concurrent pro-
cess the model describes that has at least one occurrence
of action A and at least one occurrence of action B, at least
one occurrence of action A causally precedes at least one
occurrence of action B; otherwise, it evaluates to false.

TotalDominantCausal(A,B) The predicate evaluates to true if in every concurrent pro-
cess the model describes that has at least one occurrence
of action A and at least one occurrence of action B, there
is one occurrence of action A that causally precedes every
occurrence of action B; otherwise, it evaluates to false.

TotalFunctionalCausal(A,B) The predicate evaluates to true if in every concurrent pro-
cess the model describes that has at least one occurrence
of action A and at least one occurrence of action B, there
is one occurrence of action B such that every occurrence
of action A causally precedes that occurrence of action B;
otherwise, it evaluates to false.

TotalCausal(A,B) The predicate evaluates to true if in every concurrent pro-
cess the model describes that has at least one occurrence
of action A and at least one occurrence of action B, every
occurrence of action A causally precedes every occurrence
of action B; otherwise, it evaluates to false.

Table 4: Causality predicates. The predicates are evaluated in the context of a process model.

In a study with the prospective stakeholders of PQL, all twelve preselected
4C predicates were recognized as suitable for process querying. The CanOccur,
AlwaysOccurs, Cooccur, Conflict, TotalCausal, and TotalConcurrent
predicates were, in addition, identified as most useful and such that are most likely to
be used for solving practical problems [22].
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3.1.2 Scenarios

Any finite repertoire of behavioral predicates is limited in its expressive power, as
it can only express a finite number of conditions over a fixed collection of actions,
while the number of process collections that process models can express over the
same actions is unbounded [21]. Therefore, in addition to querying based on the 4C
predicates, PQL supports scenario-based querying [25].

The concept central to scenario-based querying is the notion of a trace with
wildcards. A trace with wildcards is a finite sequence in which every element is
either a special wildcard element ‘∗’ or a pair composed of an action and a number
between zero and one. For example, ω = 〈∗,(A,1.0),(B,0.8),∗,(A,1.0)〉 is a trace
with wildcards composed of five elements.

A trace with wildcards defines a collection of processes. These processes result
from the concatenation of collections of sequences defined by the elements of the
trace. The concatenation is performed in the order the corresponding elements appear
in the trace. The special ‘∗’ element defines the collection of all finite sequences over
all possible actions. In turn, an element that is a pair of an action x and a number y
defines the collection of all sequences composed of one action, where the actions are
taken from the set of all actions that are similar with x to the level of at least y; the
similarity should be established based on some given similarity function that maps
pairs of actions to their similarity scores between zero and one. Different similarity
functions can be used. For instance, one such similarity function can be established
based on the similarity of action names or labels. Thus, ω defines the collection
that includes every process in which action A eventually occurs, that occurrence is
immediately followed by an occurrence of action B, or an occurrence of some similar
with B action, and then some other actions can occur before the process ends with
yet another occurrence of action A.

The Executes predicate takes as input a trace with wildcards and verifies,
in the context of a given process model, whether the model describes at least
one process that is also included in the collection of processes defined by the
trace. In other words, it verifies whether the model can execute actions accord-
ing to the pattern captured by the trace. If so, the predicate returns true; other-
wise, it returns false. The concrete syntax of the Executes predicate for the
input trace with wildcards ω is Executes(<∗,"A","B"[0.8],∗,"A">), or
Executes(<∗,"A",~"B",∗,"A">) if the process querying tool is configured
to use 0.8 as the default action similarity threshold.

The Executes predicates can be used, together with the 4C predicates, as
atomic propositions in the propositional logic formula of the WHERE clause of a PQL
query, thus enriching the expressive power of the language. Indeed, by combining
Executes predicates, one can, for instance, express a condition to check whether a
given model describes, or does not describe, some finite collection of processes of
interest. Note that, in general, the number of such conditions is unbounded. For more
information on the scenario-based querying support in PQL, refer to [25].
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3.2 Process Manipulation

Process manipulations in PQL are implemented using the concept of an optimal
alignment between a process and a process model [3, 4]. An alignment is composed
of moves. A synchronous move is a pair in which both elements are the same action,
for example (A, A). In contrast, an asynchronous move is a pair in which one element
is an action, and the other element is a special “no move” element, denoted by ‘�’.
An alignment is a sequence of synchronous and asynchronous moves for which two
conditions hold. First, the first elements from the moves, when positioned in the order
the corresponding moves appear in the alignment and all the “no move” elements
are skipped, form the process. Second, the second elements from the moves, again
positioned as in the alignment and without the “no move” elements, form a process
described by the model. Finally, an optimal alignment between a process and model
is an alignment between the process and model such that every other alignment
between them has more asynchronous moves than an optimal alignment.

An alignment is often summarized as a table. For instance, Table 5 shows an
optimal alignment between process 〈F,D,G〉 and process model 5 from Fig. 1. It
is a sequence of thirteen moves. In the table, moves are encoded as columns, such
that two successive columns refer to two successive moves in the alignment. Each
column has two rows. The top row of each column specifies the first element in the
corresponding move, while the bottom row specifies the second element in the move.
Hence, the optimal alignment in Table 5 consists of two synchronous and eleven
asynchronous moves.

� � � � � F D G � � �

A C B E D F � G D E F

Table 5: An optimal alignment between process 〈F,D,G〉 and process model 5 from Fig. 1.

For instance, PQL relies on the alignment from Table 5 to implement query
Q5 discussed in Section 2 on model 5 from Fig. 1. Indeed, the alignment demon-
strates that the process fragment 〈F,D,G〉 requested to be inserted into the model,
see “INSERT <∗,"F","D","G",∗>” in the query, has a “gap” captured by the
asynchronous move (D,�) in the processes described by the model, see the move
highlighted with gray background in the alignment. This asynchronous move deter-
mines the place in the model at which action D can be inserted; after process-prefix
〈A,C,B,E,D,F〉 and before process-suffix〈G,D,E,F〉. The concrete modifications on
the model are then implemented using process repair techniques [10, 20] from the
field of process mining [2]. Recall that model 7 in Fig. 3 is a model that results from
executing query Q5 on model 5.
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Fig. 5: A schematic view of the components of the Process Querying Framework
implemented in PQL; adapted from [24].

4 Process Querying Framework

The Process Querying Framework (PQF) is an abstract system of components that
can be selectively replaced to result in a new process querying method [24]. In
this section, we identify which active and passive components of the framework are
supported in PQL. The aim of this exercise is threefold: Tracking the status of the
PQL implementation, planning the next design and implementation activities, and
preparation of PQL for comparison with other process querying methods positioned
within the framework.

Fig. 5 shows a schematic view of the framework. In the figure, rectangles and
ovals denote active and passive components, respectively. The arcs denote input and
output passive components of active components. That is, the passive components
are consumed and produced by the active components. Dashed lines encode the
aggregation relationships between the passive components. Finally, we use different
backgrounds to reflect the different implementation statuses of the components; refer
to the legend in the figure. The framework consists of four parts, each responsible for
one dedicated function, including managing processes and queries, preparing and
executing queries, and supporting the interpretation of querying results. In Fig. 5,
each part is enclosed in an area with a dotted border.

The “Model, Simulate, Record, and Correlate” part of the framework is responsible
for the management of the process repository and process queries. In general, the
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repository can comprise different types of models of processes. PQL was initially
introduced to address querying of process models, that is, conceptual models that
describe collections of processes. Examples of process models are Petri nets, BPMN
diagrams, Event-driven Process Chains (EPCs), and UML Activity Diagrams. The
current implementation of PQL works with process models formalized as Petri
nets. Note that for many process modeling notations, the corresponding mappings
to Petri nets have been devised. Being able to query process models, PQL can be
adapted for querying their recorded executions, also known as event logs in process
mining [2], and, consequently, to simulation models, as combinations of models
and their executions. The extension of PQL to support querying over event logs and
simulation models is future work. Other models that describe processes, for instance,
correlation models that specify relationships between multiple processes, are not
currently supported by PQL. A process querying instruction specifies an intent to
query or manipulate a process repository utilizing various query conditions. PQL is a
language for formalizing process querying instructions. It supports process querying
by means of the read intent implemented using SELECT statements. In the current
version of PQL, process manipulation is implemented using INSERT statements that
address the create and update process querying intents. In the future, the support of
the update intent will be supplemented by UPDATE and DELETE PQL statements.

The “Prepare” part of the framework, as its name suggests, is responsible for
preparing the process repository for efficient querying. The framework offers two
types of preparations: indexing and caching. The Indexing component takes a process
repository as input and constructs its alternative representation, called an index,
which is then used to optimize computations during the execution of process queries.
PQL implements indexing of the 4C behavioral predicates for all the process models
in the repository. At runtime, when computing PQL programs, the precomputed
behavioral relations are accessed in the index in close to real-time and reused. We
plan to implement an additional index based on the special data structures, called
untanglings of process models [23]. Untanglings can be used to efficiently identify
groups of actions that can be executed together in some process. The Caching
component stores data computed in the previous executions of PQL programs that
then gets reused in computations of the future PQL programs. We plan to implement
caching in PQL based on the statistics of the past PQL program executions.

The “Execute” part is responsible for executing process queries and comprises
components for filtering process repositories and optimizing and executing process
queries. For efficiency considerations, before a PQL program is executed, models
that clearly should not be included in the result of the program are filtered away.
The Filtering component of PQL checks whether actions that, according to the
PQL program, must or must not be present in the result of the program are indeed
described or not described, respectively, by the input model. We will extend this
capability with filtering based on the untanglings to detect if combinations of actions
can or cannot occur in an execution of the candidate model or process. Design and
implementation of comprehensive query optimization mechanisms in PQL is future
work. In the current implementation of the language, the execution plan of a PQL
program is guided by its parse tree. Basic execution optimizations are supported. For
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example, when the result of a propositional logic formula is known based on a subset
of its propositions, the other propositions are not computed. Finally, the Process
Querying component of the PQL method implements the formal semantics of the
language; see [22,25] for details. When a PQL program is executed, it takes as input
a process repository and produces another repository consisting of the retrieved and
manipulated, as requested by the PQL program, models.

The “Interpret” part of the framework is responsible for communicating the
querying results to the user. All the components of this part aim to improve the
comprehension of the results. The components are inspired by the various means for
improving comprehension of conceptual models [16]. PQL results are encoded as
process models or processes. The user can foster their understanding by inspecting, or
reading, them. Future work will address the design, implementation, and evaluation
of other techniques for explaining, projecting, translating, visualizing, animating,
and simulating results of PQL programs for their better comprehension.

5 Implementation

The PQL querying method has been implemented in an open-source process reposi-
tory.2 Users interact with the repository via command-line interfaces (CLIs) of two
utilities: the PQL bot and the PQL tool. The PQL bot prepares models for querying,
while the PQL tool executes PQL programs over the models stored in the repository.

PQL programs process only indexed models. The PQL bot systematically indexes
models in the repository. One can start multiple bot instances simultaneously to index
multiple models in parallel. To construct an index, a bot instance computes all the 4C
behavioral predicates over all the actions of the model using three types of analysis
over the reachable states described by the model: the reachability analysis [12], the
coverability analysis [29], and the structural analysis over a complete prefix [9, 18]
of the unfolding [19] of the model. PQL bots use the solutions to the reachability and
covering problems implemented in the LoLA tool version 2.0 [31]. The implementa-
tion of the algorithm by Esparza et al. [9], available as part of the jBPT library [27],
is used to construct finite complete prefixes of unfoldings.

Process models stored in the repository are Petri nets described using the Petri
Net Markup Language (PNML) [5]. Many high-level process modeling languages,
such as BPMN and EPC, can be translated to Petri nets [1, 7]. As a result, PQL can
be used to query and manipulate models developed using a wide range of notations.

The listing below shows a sample output of a PQL bot instance. One can configure
a bot instance by specifying its name (option -n), time to sleep (i.e., stay idle)
between indexing two models (option -s), and maximal time to attempt indexing
a model (option -i). Once started, a bot instance alternates sleeping and indexing
phases and sends periodic alive messages to the repository. Before indexing, models
are checked for semantic correctness.

2 https://github.com/processquerying/PQL.git

https://github.com/processquerying/PQL.git
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>> java -jar PQL.BOT-1.0.jar -n=Brisbane -s=60 -i=3600
>> =======================================================================
>> Process Query Language (PQL) Bot ver. 1.0
>> =======================================================================
>> Name: Brisbane
>> Sleep time: 60s
>> Max. index time: 3600s
>> =======================================================================
>> 10:45:18.487 Brisbane - There are no pending jobs
>> 10:45:18.487 Brisbane - Sent an alive message
>> 10:45:18.497 Brisbane - Going to sleep for 60 seconds
>> 10:46:18.505 Brisbane - Woke up
>> 10:46:18.525 Brisbane - Retrieved indexing job for the model with ID 1
>> 10:46:18.575 Brisbane - Start checking model with ID 1
>> 10:46:23.506 Brisbane - Finished checking model with ID 1
>> 10:46:23.506 Brisbane - Start indexing model with ID 1
>> 10:47:03.608 Brisbane - Finished indexing model with ID 1
>> 10:47:03.608 Brisbane - Going to sleep for 60 seconds
>> 10:48:03.613 Brisbane - Woke up
>> 10:48:03.623 Brisbane - Retrieved indexing job for the model with ID 2
>> 10:48:03.673 Brisbane - Start checking model with ID 2
>> 10:48:13.248 Brisbane - Finished checking model with ID 2
>> 10:48:13.249 Brisbane - Start indexing model with ID 2
>> 10:49:52.679 Brisbane - Finished indexing model with ID 2
>> 10:49:52.679 Brisbane - Going to sleep for 60 seconds
>> 10:50:52.704 Brisbane - Woke up
>> 10:50:52.704 Brisbane - There are no pending jobs
>> ...

Table 6 lists several CLI options of the PQL tool. For example, the PQL tool can
be used to store (option -s), check (option -c), index (option -i), and delete
(option -d) a process model, visualize the parse tree of a PQL program (option -p),
execute a PQL program (options -q), and to reset the repository (option -r).

Option name Short name Parameter Description Required option
-check -c Check if model can be indexed -id
-delete -d Delete model (and its index) -id
-index -i Index model -id
-identifier -id <string> Model identifier
-parse -p Show PQL program parse tree -pql
-pnmlPath -pnml <path> Path to a PNML file
-pqlPath -pql <path> Path to a PQL file
-query -q Execute PQL program -pql
-reset -r Reset repository
-store -s Store model in the repository -pnml (-id)

Table 6: CLI options of the PQL tool.

To store models in the repository, the CLI option -s of the PQL tool must be
accompanied by the -pnml option that specifies a path to a single PNML file or to a
directory that contains many PNML files. If a path to a single PNML file is specified,
the call must include option -id to specify a unique identifier to associate with the
model; otherwise, the models are attempted to be stored using their file names as
unique identifiers. A stored model can be indexed by a PQL bot instance or by the
PQL tool using the CLI option -i accompanied by option -id that specifies the
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unique identifier of the model that should be indexed. When indexing a model, the
PQL tool uses the same routines as the PQL bot.

To execute a PQL program, the user can use options -q and -pql of the PQL
tool. The latter specifies a path to a file that contains the program. An example
command-line output of executing a PQL program is shown below. Here, the PQL
tool is requested to execute the PQL program stored in the prog.pql file. The
program requests to retrieve every model in the repository in which the “process
payment” action, or a similar action, occurs in every execution the model describes;
note that two similar actions, “process payment by cash” and “process payment by
check,” were found in the repository for the requested similarity threshold of 0.8.
The tool retrieved two models that match the query. These are models with identifiers
364 and 778; see the last line of the listing.

>> java -jar PQL.TOOL-1.0.jar -q -pql=prog.pql
>> PQL query: SELECT * FROM * WHERE AlwaysOccurs("process payment"[0.8]);
>> Attributes: [UNIVERSE]
>> Locations: [UNIVERSE]
>> Task: "process payment"[0.8] -> ["process payment by cash",
>> "process payment by check"]
>>
>> Result: [364, 778]

The PQL tool supports multi-threaded querying. The user can configure the desired
number of threads to use for executing PQL programs. As a result of executing a
PQL program, the tool returns a collection of matching and augmented models.

6 Discussion

The design of PQL aims to maximize the number of supported process querying
and process manipulation techniques, as requested by the process querying compro-
mise [24], which identifies a concrete process querying method as an intersection of
implemented decidable, efficient, and suitable techniques. In this section, we discuss
research problems that emerged during the design of PQL, and solutions to these
problems that shaped PQL and will inform the future extensions to the language.
First, Section 6.1 discusses four fundamental problems of process querying that PQL
aims to solve. Then, Section 6.2 discusses problems that aim to ensure the quality of
process querying and manipulation operations performed by PQL. Next, Section 6.3
summarizes conducted work to establish the suitability of PQL. Finally, Section 6.4
is devoted to the aspects related to the ability to compute PQL queries efficiently.
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6.1 Querying and Manipulation

Given a process model and a process query that describes a collection of processes,
the process querying problem is a decision problem that consists in checking whether
the model describes processes from the collection.

Process querying problem. Given a process model and a description of a collection
of processes, check if the model describes processes included in the collection.

PQL can be used to pose and solve process querying problems via SELECT state-
ments. One may want to augment a process model so that the collection of processes
it describes includes specified processes. This task can be fulfilled by solving the
process insertion problem.

Process insertion problem. Given a process model and a description of a collection
of processes, construct a process model that describes processes captured in the
model and included in the collection.

PQL INSERT statements can be used to express and solve process insertion problems.
In contrast, if a model needs to be augmented to describe processes of the original
model without some specific processes, a process deletion problem must be solved.

Process deletion problem. Given a process model and a description of a collection
of processes, construct a process model that describes processes captured in the
model but not included in the collection.

One can use PQL DELETE statements to formulate and solve process deletion
problems. However, if specific processes must be replaced in the collection of
processes described by a model, a process update problem must be solved.

Process update problem. Given a process model, a description of a collection of
source processes, and a description of a collection of target processes, construct a
process model that describes processes captured in the model and included in the
target collection but not included in the source collection.

PQL UPDATE statements can be used for expressing and solving process update
problems. Future solutions to the above four problems will be considered for inclusion
in PQL by implementing and offering them to the users via the corresponding PQL
statements.

6.2 Quality

Given a process model and a query, process querying solves a decision problem
with a yes-or-no answer that indicates whether the model matches the query or not.
The quality of such a decision is also binary; the decision is either correct or not.
Process manipulation is different, as a requested manipulation can be fulfilled to
various degrees. To compare methods for manipulating process models, either to
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select a method to implement as part of PQL or to choose an already implemented
method for triggering during PQL query execution, one should be able to measure
and compare their quality in terms of the resulting models they produce. The quality
of manipulated process models can be compared against different aspects. Several of
these aspects are discussed below, giving rise to three research problems.

Simplicity problem. A process model that results from a solution to a process
insertion, deletion, or update problem should be simple.

It may be necessary to manually analyze a process model that results from PQL ma-
nipulations, for example, to obtain feedback on the model from a process analyst or a
domain expert. Hence, the manipulated models must be comprehensible. That is, they
should be simple to understand for human readers. Simplicity is the desired quality
for many artifacts automatically learned from data using data mining and process
mining techniques. The simplicity criteria for learned models are often implemented
as realizations of the Occam’s Razor principle [11] that states that a model should
use as few constructs as possible. Alternatively, this principle can be interpreted as if
a model should not be overcomplicated without necessity. Consequently, existing
simplicity criteria [13–15] from the field of process mining [2] can be reused to assess
the simplicity of the manipulated by PQL models. The model simplicity criteria that
will be developed in the future may consider the specifics of the process manipulation
problems, refer to Section 6.1.

Resemblance problem. A process model that results from a solution to a process
insertion, deletion, or update problem for a given process model should resemble
the original model.

As PQL manipulations are applied over a given process model, it may be desirable
that a resulting manipulated model resembles the original model. This desire, again,
can stem from the potential necessity to assess manipulated models manually, this
time in the context of the original model. Indeed, the user may know the model
they request to manipulate and, consequently, expect that the resulting model is not
radically different from the model they know, especially if the intended changes to the
model are not extensive. This intention to keep resemblance with the original model is
similar to the desire of repaired models, studied in process mining [2], to resemble the
original models that were repaired. Thus, measures of model resemblance developed
in the context of process manipulation can draw inspiration from the corresponding
measures studied as part of the process repair problem [10, 20].

Correctness problem. A process model that results from a solution to a process
insertion, deletion, or update problem should describe the requested processes.

A solution to a process manipulation problem, either an insertion, deletion, or an
update problem, should construct a process model that describes a specific, requested
collection of processes. However, methods for process manipulation can produce
models that do not fulfill this correctness criterion; for instance, to avoid constructing
complex models or models that do not resemble the input models. Various measures
can be introduced to assess the correctness of manipulated models in terms of the
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Fig. 6: A schematic visualization of the participating process collections in the
context of a solution to the process deletion problem: (a) the problem definition and
(b) a possible problem solution.

processes they describe. These measures can quantify and compare collections of
processes that were requested and appeared, were requested and did not appear,
were not requested and appeared, and were not requested and did not appear in the
processes described by the manipulated model.

Fig. 6(a) visualizes an example process deletion problem schematically. Con-
cretely, given a model that describes a collection of processes M, the problem
requests to construct a model that describes processes captured in the input model
but not in a collection of processes D. Hence, the resulting model should describe
the collection of processes M \D, denoted by the shaded region in the figure. In turn,
Fig. 6(b) shows a collection of processes M′ described by some model constructed as
a solution to the problem superposed on the two process collections from Fig. 6(a).
Several sets of processes emerge in this situation. Processes α are the processes that
should and are described by the resulting model, while processes β are the processes
that should not but are described by the resulting model. The resulting model does
not describe processes γ1 and γ2. However, while processes γ2 were correctly deleted,
processes γ1 should be present in M′. Processes δ1∪δ2 are not participating in the
problem definition but are described by the resulting model. Finally, processes ε1∪ε2
were requested to be deleted, were not described by the input model, but ended up as
described by the resulting model. A good solution to the process deletion problem
should aim to minimize the sizes of sets γ1, β , δ1, δ2, ε1, and ε2. The measures of
the correctness of process manipulations should quantify this intuition to support
the design of correct methods. Here, again, we can learn from the subarea of con-
formance checking [6, 26] in process mining [2], which studies ways to diagnose
commonalities and discrepancies between processes.

Consider models 8 and 9 in Fig. 3 that can result from executing query Q6
presented in Section 2 on model 3 from Fig. 1. If we apply the reasoning from Fig. 6
to these two models, then for model 8 it holds that β is empty and γ1 = AG(DED)+,
where γ1 is specified by a regular expression, while for model 9 sets β and γ1 are
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both empty. Hence, model 9 can be considered as a more correct, and hence a better,
result of query Q6 than model 8.

6.3 Suitability

The suitability of a method refers to its quality of being appropriate for a purpose.
Conducted empirical studies on the suitability of the current process querying meth-
ods guide their design and implementation.

To evaluate the suitability of the 4C behavioral predicates for the purpose of
process querying and to identify the most relevant predicates to implement in PQL,
we performed a user study [22]. In that study, we conducted semi-structured in-
terviews with business analysts that actively work with process models. In the
interviews, besides explaining the high-level design of PQL, we tested the under-
standing of twelve preselected 4C predicates and asked to evaluate their ability to
fulfill the process querying tasks. The twelve predicates were selected to ensure
they include, and combine in different ways, all the features of all the 4C predi-
cates. Our questions to the stakeholders probed usefulness, importance, likelihood,
and frequency of using the predicates in daily work. All the predicates were iden-
tified as suitable, while the six most relevant were implemented in PQL. These are
the CanOccur, AlwaysOccurs, Cooccur, Conflict, TotalCausal, and
TotalConcurrent predicates.

Process querying grounded in the collection of the 4C predicates, or any other set
of similar predicates, has a fundamental limitation. A querying method that relies
on a finite number of behavioral predicates can distinguish between a finite number
of model classes [21], where any two models from the same class are considered
equivalent by every query. The scenario-based process querying facilities of PQL
extend its expressiveness [25]. PQL querying based on traces with wildcards, as
explained in Section 3.1.2, can be used to express an intent to retrieve a model that
describes processes that contain, or do not contain, any finite collection of processes
and, thus, can be used to discriminate infinitely many models.

Future studies will strengthen the current results on the suitability of PQL for
fulfilling process querying and process manipulation tasks.

6.4 Decidability and Efficiency

Karsten Wolf demonstrated that computations of all the 4C predicates currently
implemented in PQL can be reduced, often via exponential space transformations, to
model checking [32]. In that work of Karsten Wolf, the reduction of one 4C predicate,
namely the total existential concurrent predicate, was left open, and its decidability,
for the general case, is currently unknown. In addition, the proposed transformations
for four 4C predicates are applicable only in the special case of the absence of auto-
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concurrency in process models. Note that model checking over infinite-state systems
is undecidable and is PSPACE-complete over finite-state systems [8], making it
from challenging to impossible to evaluate the predicates at runtime. Hence, we
precompute and store values of the predicates we can obtain in an index and access
this index in close to real-time during the computation of PQL queries.

To perform scenario-based querying, that is, to check if a model describes a
process that matches a sequence of actions with wildcards (see queries Q3 and Q4
in Section 2), first, the queried model gets transformed. The size of the transformed
model is proportional to the size of the model and the scenario of interest. Then, an
optimal alignment between the transformed model and a sequence of actions induced
by the scenario of interest is constructed, and its cost is analyzed. The problem of
computing an optimal alignment is equivalent to the reachability problem [3, 4],
which is decidable [30] with the exponential space as the lower bound [17]. Despite
its high computational complexity, the proposed method works in close to real-time
on industrial and synthetic models [25]. To speed up query processing, we propose
to use the untangling-based index [23] that allows identifying models that describe a
process in which all actions from the scenario of interest occur. Then, further checks
should be applied to verify if the actions occur in a requested order.

PQL queries that solve the process insertion problem are implemented using the
impact-driven process model repair method [20]. Similar to scenario-based querying,
the method relies on optimal alignments to compute queries. However, in this case,
the alignments are used to identify the minimal required changes to the model to
fulfill the query.

7 Conclusion

This chapter gives an overview of PQL, a domain-specific programming language
for process querying and process manipulation. PQL is a declarative language with
the SQL-like syntax. It is useful for managing process models stored in process
repositories based on the processes that these models describe. Process querying is
supported in PQL by means of the SELECT statements, while process manipulation
is implemented using the INSERT, DELETE, and UPDATE statements. The chapter
also discusses the currently supported features of the language, a publicly available
implementation of a process repository with PQL support, future design and im-
plementation efforts aimed at shaping the language, and open research problems
triggered by the design of the language.
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